ERS-2

Product Handbook

ERS-2 Reprocessing for the Study of the Continental Surfaces

ERS2-RDK-V1.1 Date: April, 2016

doi:10.6096/CTOH_ERS-2_2015_01

EGO

Issue:	Date:	
0.0	February 2015	Created
0.1	February 2015	Iterated draft after comments (N. Fuller, F. Frappart and B. Legresy)
0.2	March 2015	Iterated draft after comments (S. Fleury)
0.3	April 2015	Update of the values of the inter-mode corrections (F. Blarel)
0.5	June 2015	Section 10 added
0.6	July 2015	Added DOI reference and update of some valariables names
1.0	Aout 2015	Release to the public
1.1	April 2016	Text correction
Written by	Fabien Blarel	
Checked by	Sara Fleury, Nicolas Fuller, Frédéric Frappart, Benoit Legresy, Fernando Niño	
Context	CTOH ERS-2 r	reprocessing activity
Keywords	ERS-2, ICE-1, ICE-2, retracking, cross-validation, continental surfaces	

Table of contents

1 Introduction	3
2 Improvements on previous products	4
3 Overview of data quality	7
4 Product descriptions and conventions.	7
5 Data access	9
6 Conventions of data usage	9
7 Product Parameters Overview	11
8 Detailed ERS-2 product parameters	14
9 Detailed original CTOH added parameters and corrections	20
10 Detailed parameters and corrections interpolated from ERS-2 Reaper Product	
11 References.	

1 Introduction

1.1 Purpose and scope of this user guide

This document presents the ERS-2 data product *-release CTOH_ERS-2_2015_01-* processed by the CTOH at the LEGOS Laboratory. This document will be modified and updated for each new release provided by the CTOH.

1.2 The CTOH re-processing project

The CTOH re-processing project is tailored to obtain the most accurate information possible from ERS-2 data incontinental surfaces. As such, it is complementary to the REAPER project [1].

The first goal of the CTOH project is to reprocess, at a global scale, ERS-2 waveforms using a new implementation of the ICE-2 retracker (Legresy et al. 2005) [2] using thebest orbit available (Rudenko et al. 2014) [3]. During the process, new values of the ICE-1 retracking are also obtained, for the low, medium and high leading edge levels (corresponding to 25, 50 and 75% threshold values)

The second goal of the project is to improve the consistency between the ERS-2 data and ENVISAT V2.1 data, and provide better quality times series spanning the period of the two missions. For this, the calculation of some corrections particularly relevant for continental surfaces have been improved (e.g. tropospheric correction, doppler slope correction).

1.3 Dataset identification

This ERS-2 data product is identified using a Digital Object Identifier (DOI): doi:10.6096/CTOH_ERS-2_2015_01. The product should be cited as CTOH, (2015), as detailed below. The associated science reference article by Legresy et al (2015) should also be mentioned :

CTOH. 2015. « Dataset: Altimetric data of the ERS-2 mission ». *OMP-INSU-UPS-IRD*. doi:10.6096/CTOH_ERS-2_2015_01.

F. Frappart, Legrésy, B., F. Nino, F. Blarel, N. Fuller, S. Fleury, et F. Birol. 2016. « *An ERS-2 altimetry product compatible with ENVISAT for continental and ice surface studies.* ». Remote Sensing of Environment.

2 Improvements on previous products

2.1 Orbit

The orbit computed by Rudenko et al. 2014 [3] has been used; it is an upgrade of the REAPER combined orbit [4] which is used for ESA's REAPER ERS product. Using this orbit we obtain an improvement of data consistency, particularly a reduction of standard deviation t crossovers; cross-validation with the ENVISAT V2.1 data during the tandem phasealso shows an improvement over the REAPER combined orbit.

2.2 Tropospheric corrections

The tropospheric corrections have been improved over continental surfaces by using the re-analysed meteorological data ERA Interim form European Center for Medium Range Weather Forecasting (ECMWF). The algorithm has been also changed by taking into account the surface elevation measured by the radar altimeter rather than the Digital Elevation Model (DEM). This improvement shows that this correction becomes more relevant over continental surfaces (Blarel et al. 2010)[5].

The dry tropospheric correction is already available in the ERS-2 release (ESA REA-UG-PHB-7003). The wet tropospheric correction will be soon available due to an important amount of data to process. Nevertheless the CTOH product has been completed by a copy of the wet tropospheric correction from the ERS-2 REAPER product which is computed using ECMWF ERA Interim data and a DEM.

2.3 Doppler slope correction

The doppler slope correction has been reimplemented following the recommendations of Blarel et al. 2012 [6]. The main result of this study shows that this correction depends strongly on the accuracy of the surface slope but it also depends to the real surface observed by the altimeter. In this case the DEM used in the previous ERS-2 product is not enough relevant to calculate it. Specifically for cryosphere areas or hydrology areas where the topography is always changing. Following the recommandation, this correction has been thun recomputed using a more accruate surface slope obtain directly from the altimeter mesaurement.

2.4 Ionospheric Correction

Ionospheric corrections have also been consolidated into a homogeneous dataset, using the New Ionospheric Climatology 2009 (NIC09) [7] model until 1998 and the GPS Ionosphere Maps (GIM) [8] after that.

2.5 Cross-validation

The ERS-2/ENVISAT cross-validation has been done using the 11 cycles of the tandem phase (ERS2: cycle 75 to 85 and ENVISAT V2.1: cycle 7 to 17). From the cross-validation for each ICE-1 and ICE-2 parameters we observe:

• a strong linear dependency of the parameters difference at crossover with the

orbit altitude over ocean; we have not yet found a clear technical explanation for this.

• a bias due to the different bandwidth mode over continental surfaces (ERS-2 in "ice mode" (BW=82.5Mhz) and ENVISAT-V2.1 in "ocean mode" (BW=320Mhz)). The bias observed over Antarctica and those over Greenland are very similar for all ICE-1 and ICE-2 parameters; these observations suggest that these inter-mode biases are constant, to a good approximation.

These preliminary results have been presented for the OSTST 2014 [9]. All detailed results will be available soon in the cross-validation report in the CTOH web site.

2.6 Inter-calibration

From the cross-validation, we have calculated an inter-mission biasfor the ERS-2 mission relative toto the ENVISAT v2.1 mission. This bias has been calculated as having two components: the large scale inter-mission bias and an inter-mode bias over continental surfaces.

The first component has been calculated over ocean and for each ICE-1 and ICE-2 parameters. We calculated linear functions of the orbit altitude and systematic bias which characterize as empirical large scale offset functions. Once corrected for these large scale offset functions, the two missions show an overall good agreement.

Over continental surfaces and specifically over cryosphere, we estimated statically the inter-mode bias correction as it shows in the table below:

Bias ERS2/ENVISAT Inter-mode	ICE-1 Ice-mode	ICE-2 Ice-mode
Backscatter (dB)	-0.838	0.921
Range (m)	0.432	-0.205
Leading Edge Width (m)		-0.718
Trailing Edge Slope (10 ⁶ s ⁻¹)		-0.360

The inter-mission bias is available for each ICE-1 and ICE-2 parameters in the data ERS-2 product as named:

- ice1_range_intermission_corr_20hz: Inter-mission correction of the ICE-1 range.
- ice1_sig0_intermission_corr_20hz: Inter-mission correction of the ICE-1 Backscatter.
- ice2_range_intermission_corr_20hz: Inter-mission correction of the ICE-2 range.
- ice2_sig0_intermission_corr_20hz: Inter-mission correction of the ICE-2

Backscatter.

- ice2_le_with_intermission_corr_20hz: Inter-mission correction of the ICE-2 Leading edge Width.
- ice2_1st_te_slope_intermission_corr_20hz: Inter-mission correction of the ICE-2 Trailing edge Slope.

2.7 Flags records

The data status had been improved to help users to edit the right data due to issues observed in the data:

 <u>ctoh_flag</u>: This flag indicating the validity of time data (no jumps, always increasing) at 1 Hz ctoh flag = 0 time tag is ok.

For details see the section 3.1.

- <u>ice2_flag_20hz:</u> This flag indicate the ICE-2 retracker estate:
 - ice-2_flag_20hz = $0 \rightarrow$ All ICE-2 parameters are Ok ice-2_flag_20hz = $1 \rightarrow$ ICE-2 parameters are Ok but no backscatter ice-2_flag_20hz = $2 \rightarrow$ NOK
- <u>alt_flag_ocean1_ice0_20hz</u>: This flag indicates the altimeter operating mode:
 ocean mode : 330MHz Band Width, flag value = 1
 ice mode : 82.5MHz Band Width, flag value = 0
 This flag does not indicate the actual surface type (from ESA WAP product).
 This flag is impacted by calibration mode issues. The CTOH has solved this problem and produce this flag_ocean1_ice0_20hz corrected flag.
- flag ocean1 ice0 20hz: This flag indicating operating mode: flag value = 1ocean mode : 330MHz Band Width, flag value = 0ice mode : 82.5MHz Band Width, This flag does not indicate the actual surface type. This is a original CTOH's mode flag corrected of the calibration issues found in the alt flag ocean1 ice0 20hz flag parameter in the ESA WAP product.
- <u>calib_mode_flag_20hz</u>: This flag is deduced by the CTOH from alt_flag_ocean1_ice0_20hz and the calibration period observed every 2400 20hz-ressords.

calib_mode_flag_20hz = $0 \rightarrow Ok$.

calib_mode_flag_20hz > 0 \rightarrow NOK. Data impacted by the calibration mode. Data not usable.

For details see the section 3.1.

3 Overview of data quality

3.1 Known issues in ERS2-RDK-V1.0

non-monotonous time

We have found in about 20% ofpasses that time is not always increasing (i.e. successive points show a step back in time, clearly unrealistic). This problem of time is also reported as overlapping ranges of time in WAP files in the Reaper RA L2 Validation report by Scharroo (<u>https://earth.esa.int/documents/10174/1511090/REA-TR-VAL-L2-7001-3-1.pdf</u>). Furthermore, the regularity of the 1Hz time is also checked.

If a record arrives before the expected time (less than 1 sec between altimetry packets) there is no clear explanation and there is, usually, sample overlapping. The ctoh_flag to a value of 1 indicates this is the case.

If a record arrives after the expected time, it is frequently either because of lost data or because of additional delays linked to surface slope topography. As before, ctoh_flag indicates if the data are valid or not.

•

• <u>Waveform peak problem</u>

We found waveforms present a very sharp peak every 2400 records. This problem is visible in retrackers Ocean, ICE-1 and ICE-2 – all of them giving unphysical values. It appears that is the result of a cyclic perturbation due to on-board procedures (calibration?).

The CTOH has created the calib_mode_flag_20hz flag in order to remove these bad records (section 2.7).

• <u>Trailing edge slope:</u>

The standard deviation of the ERS2 trailing edge slope (TeS) shows an anomalous feature around 13°N which is consistently observed but remains unexplained. ICE-2 data between latitudes 5 to 20°N are to be used with caution. This issue has been presented for the OSTST 2014 [9].

• <u>Orbit control</u>

During the ERS2 mission life, the orbit control was impacted by the lost of gyroscope after the cycle 60. This problem impact the repeatability of the passes and the consistency of the time series of the parameters. This issue is not specific to CTOH reprocessing, but it is particularly important to take it into account when using data for continental surfaces[10].

4 Product descriptions and conventions

The CTOH re-processing is oriented for continental surfaces and it is complementary to the REAPER re-processing. The data naming conventions and the format (NetCDF) used for this product are hence as close as possible to those from ESA's REAPER product.

СТОН		CTOH ERS-2 2015 01
	ERS-2 Product Handbook	$\overline{Issue : 1.1}$
		Date : April 2016

Nevertheless, some particularities remain, which we describe hereinafter..

4.1 Time

Measurement time is stored as a double-precision floating-point number, counting in seconds from 1st January 1990. The 1Hz time is the average of the twenty 20Hz times it was derived from.

4.2 Orbit Altitude

The orbit altitude (alt and alt_20hz) and also the coordinates (lon, lon_20hz, lat and lat_20hz) have been estimated by interpolating the time from the WAP data and the Rudenko et al. [3] orbit with reference to the WGS84 ellipsoid. This ellipsoid is the same as forENVISAT-v2.1.

4.3 Range corrections

The ranges supplied in the CTOH ERS-2 product are for retracker ICE-1 and retracker ICE-2. For all of them the doppler correction (doppler_orbit_corr_20hz) and the instrumental correction (inst_range_corr) and the inter-mission correction (ice1_range_inter-mis_corr_20hz for ICE-1 range or ice2_range_inter-mis_corr_20hz for ICE-2 range) *have been already applied*.

4.4 Geophysical range corrections

The convention for correction is that to apply them, they should be added to range (or subtracted from elevation, if not already applied). It is possible that some corrections to range have missing values. In that case, there value is set to the value indicated by the *FillValue* attribute of the corresponding variable.

4.5 ICE-2 Waveform parameters

The ICE-2 waveform parameters (leading edge width, trailing edge slope and backscatter) are already corrected of the inter-mission correction (ice2_???? __intermission_corr_20hz) supplied in the ERS-2 product.

4.6 Doppler correction

The Doppler correction has been computed using the orbit described in Rudenko et al 2014 [3].

4.7 Doppler Slope correction

The doppler sloper correction has been computed as shown inBlarel et al. Proceeding 2012 [6].

4.8 Instrument correction

The instrumental correction is copied from the original WAP data supplied by ESA.

5 Data access

5.1 CTOH Database

The data are available on CTOH web site: <u>http://ctoh.legos.obs-mip.fr</u>/products/ers-2

The users have to fill request form to have access to this ERS-2 product.

6 Conventions of data usage

The surface elevation is obtained by making the difference between the orbit altitude and the altimetric range. Some corrections are applied to the altimetric range to take into account the atmospheric propagation and the geophysical perturbations on the radar signal [11]. By convention these corrections are added to the altimetric range. Some of them are given at 1 Hz and have to be interpolated to 20 Hz in order to apply to the range.

The user can choose between two range retrackers: ICE-1 and ICE-2. They have both their own specificity for continental study but the atmospheric and geophysical corrections are identical.

In order to help the users on using this ERS-2 product, we present some practical use cases of height profile calculations.

6.1 Height profile for continental surfaces

To calculate the *alti* surface elevation over the cryosphere using the ICE-2 retracker range:

```
alti= alt_20hz
-(ice2_range_20hz
+model_dry_tropo_corr_20hz
+model_wet_tropo_corr_20hz
+gim_ku
+gim_ku
+solid_earth_tide
+load_tide
+pole_tide
+doppler_slope_corr_20hz)
```

Please note that the ICE-2 range (ice2_range_20hz) used is already corrected by:

- Doppler correction calculated by the CTOH from the new orbit of Rudenko et al. 2014 (doppler_orbit_corr_20hz),
- Instrumental correction given by ESA (inst_range_corr),
- Inter-mission correction calculated by the CTOH in order to homogenize ERS-2 and ENVISAT v2.1 missions (ice2_range_intermission_corr_20hz).

Over continental surfaces the atmospheric perturbations of the troposphere could not be estimated from the Micro Wave Radiometer (MWR). The only way to correct them is to use the model dry and wet tropospheric correction (model_dry_tropo_corr_20hz and model_wet_tropo_corr_20hz) from the ECMWF atmospheric model. The CTOH has computed those corrections using the altimetric elevation deduced from the range ICE-1 at 20hz [5]. These corrections are particularly important for continental surfaces and supplied at 20hz for this reason.

The Ionospheric corrections have also been consolidated into a homogeneous dataset, using the New Ionospheric Climatology 2009 (iono_nic09) model until 1998 and the GPS Ionosphere Maps (gim_ku) after that year.

Tidal corrections (solid_earth_tide, load_tide, pole_tide) have been calculated through the same algorithms used by ENVISAT v2.1

The doppler slope correction (doppler_slope_corr_20hz) corrects the doppler effect induced by the slope surfaces over continental surfaces.

CTOH provides several editing flags; they are detailed in section 2.7. We recommend to use the flags:

- ctoh_flag to edit the data having a time tag not monotonous,
- calib_mode_flag_20hz flag to edit the measurement impacted by the calibration mode,
- ice2_flag_20hz flag to edit the measurement when the ICE-2 retracker do not manage to slove the waveform modeling,
- flag_ocean1_ice0_20hz to select the right operating bandwidth mode: ice or ocean. In this case of continental surfaces, the radar operating mode was most of the time in ice mode.

6.2 Height profile for hydrology

For hydrology, the calculation is similar to that of the continental case in the previous section and the calculation of the height profile using the ICE-1 retracker is:

```
alti= alt_20hz
-(ice1_range_20hz
+model_dry_tropo_corr_20hz
+model_wet_tropo_corr_20hz
+gim_ku
+gim_ku
+solid_earth_tide
+load_tide
+pole_tide
+doppler_slope_corr_20hz)
```

Previous studies in hydrology showed that among ranges estimated using the commonly available retracking algorithm, the ones obtained using the Offset Center of Gravity (OCOG) [12] or Ice-1 [13], and Ice-2 [14] retracking algorithms provide the best accuracy when compared to in situ measurements [15]–[17].

7 Product Parameters Overview

The following table presents the origin of the parameters contained in the CTOH ERS-2 product; most of them are computed by CTOH for continental surfaces (but available on the global product), but we do copy into our product some geophysical parameters from ESA's REAPER ERS-2 product release REA-UG-PHB-7003 (with ESA's permission, which we gratefully acknowledge). The origin of all parameters is clearly stated as part of the product's NetCDF *comment* attribute metadata.

Field	From the ESA Original data WAP	From the ERS-2 GDR of the ESA Reaper release	Re- processed by the CTOH
time	x		
meas_ind			x
time_20hz			х
lat			х
lon			х
lat_20hz			х
lon_20hz			x
alt_20hz			x
alt_flag_ocean1_ice0_20hz			x
inst_range_corr	x		
ice2_range_numval			х
ice2_sig0_numval			x
ice2_flag_20hz			х
ice2_range_20hz			х
ice2_le_width_20hz			х
ice2_1st_te_slope_20hz			х
ice2_sig0_20hz			х
ice1_range_20hz			х
ice1_range_medium_20hz			х
ice1_range_high_20hz			x
ice1_sig0_20hz	x		

СТОН

ERS-2 Product Handbook

tracker_range_20hz	x	
ctoh_flag		x
solid_earth_tide	x	
rad_water_vapour	x	
rad_liquid_water	x	
inst_agc_corr	x	
agc_20hz	x	
doppler_range_corr_20hz		x
doppler_orbit_corr_20hz		x
doppler_slope_corr_20hz		x
along_track_surface_slope_20hz		x
footprint_length_20hz		x
surface_pressure_20hz		x
model_dry_tropo_corr_20hz		x
temp_2m_ecmwf		x
mean_sea_level_pressure_ecmwf		x
iono_nic09		x
flag_ocean1_ice0_20hz		x
calib_mode_flag_20hz		x
wet_tropo_cls		x
gim_ku		x
ocean_tide_1_GOT00		x
ocean_tide_FES_04		x
ocean_tide_GOT47		x
ib_MOG2D_NF		x
ib_ECMWF_NF		x
ib_MOG2D_hf		x
ib_ECMWF_bf		x
mss_cnes_cls_11		x
mdt_cnes_cls_09		x
mdt_cnes_cls_09_med		x
geoid_goce		x
geoid_egm08		x
mss_dtu_13		x
geoid_grace		x

СТОН

ERS-2 Product Handbook

mss_cnes_cls_10		х
gridone		х
dist_to_coast_leuliette		х
dist_to_coast_stumpf		х
geoid_eigen6c3		х
gebco08		х
<pre>ice1_range_intermission_corr_20hz</pre>		х
<pre>ice1_sig0_intermission_corr_20hz</pre>		х
<pre>ice2_range_intermission_corr_20hz</pre>		х
<pre>ice2_sig0_intermission_corr_20hz</pre>		х
<pre>ice2_le_width_intermission_corr_20hz</pre>		х
<pre>ice2_1st_te_slope_intermission_corr_20hz</pre>		х
load_tide_sol2_reaper	х	
ocean_tide_sol1_reaper	х	
ocean_tide_sol2_reaper	х	
pole_tide_reaper	х	
ocean_tide_non_equil_reaper	х	
tb_365_reaper	х	
rad_wet_tropo_corr_reaper	х	
<pre>model_wet_tropo_corr_reaper</pre>	х	
tb_238_reaper	х	
ocean_tide_equil_reaper	x	
load_tide_sol1_reaper	x	

8 Detailed ERS-2 product parameters

time

```
double time(time) ;
    time:comment = "ESA shifted time (-157766400.0 sec), initially
defined in seconds since 1985-01-01" ;
    time:units = "seconds since 1990-01-01" ;
    time:calendar = "gregorian" ;
```

meas_ind

```
short meas_ind(meas_ind) ;
    meas_ind:long_name = "elementary measurement index" ;
    meas_ind:units = "count" ;
    meas_ind:comment = "Set to be compliant to CF-1.1 convention. Counts
0..19" ;
```

<u>lat</u>

```
int lat(time) ;
    lat:long_name = "latitude" ;
    lat:standard_name = "latitude" ;
    lat:units = "degrees_north" ;
    lat:comment = "CTOH recalculated latitude using the orbit solution
based on the stationary geopotential model (developed by GFZ and
CNES/GRGS). Reference: S. Rudenko, D. Dettmering, S. Esselborn, T. Schöne,
C. Förste, J.-M. Lemoine, M. Ablain, D. Alexandre, et K.-H. Neumayer,
« Influence of time variable geopotential models on precise orbits of
altimetry satellites, global and regional mean sea level trends », Advances
in Space Research, vol. 54, n° 1, p. 92-118, juill. 2014.\n" ;
    lat:scale factor = 1.e-06f ;
```

lon

```
int lon(time) ;
    lon:long_name = "longitude" ;
    lon:standard_name = "longitude" ;
    lon:units = "degrees_east" ;
    lon:comment = "CTOH recalculated longitude using the orbit solution
based on the stationary geopotential model (developed by GFZ and
CNES/GRGS). Reference: S. Rudenko, D. Dettmering, S. Esselborn, T. Schöne,
C. Förste, J.-M. Lemoine, M. Ablain, D. Alexandre, et K.-H. Neumayer,
« Influence of time variable geopotential models on precise orbits of
altimetry satellites, global and regional mean sea level trends », Advances
in Space Research, vol. 54, n° 1, p. 92-118, juill. 2014.\n" ;
    lon:scale_factor = 1.e-06f ;
```

time 20hz

```
double time_20hz(time, meas_ind) ;
    time_20hz:long_name = "CTOH high frequency time" ;
    time_20hz:comment = "CTOH recalculated high frequency time stamp
(seconds after 1st January 1990).";
    time_20hz:units = "seconds since 1990-01-01";
    time_20hz:calendar = "gregorian";
```

<u>lat_20hz</u>

```
int lat_20hz(time, meas_ind) ;
    lat 20hz:long name = "CTOH latitude high frequencey" ;
```

```
lat 20hz:standard name = "latitude" ;
      lat 20hz:units = "degrees north" ;
      lat 20hz:comment = "CTOH recalculated high frequency latitude using
the orbit solution based on the stationary geopotential model (developed by
GFZ and CNES/GRGS). Reference: S. Rudenko, D. Dettmering, S. Esselborn, T.
Schöne, C. Förste, J.-M. Lemoine, M. Ablain, D. Alexandre, et K.-H.
Neumayer, « Influence of time variable geopotential models on precise
orbits of altimetry satellites, global and regional mean sea level
trends », Advances in Space Research, vol. 54, nº 1, p. 92-118, juill.
2014.\n" ;
      lat 20hz:scale factor = 1.e-06f ;
      lat 20hz: FillValue = -2147483647 ;
lon 20hz
int lon 20hz(time, meas ind) ;
      lon 20hz:long name = "CTOH longitude high frequency" ;
      lon 20hz:standard name = "longitude" ;
      lon 20hz:units = "degrees east" ;
      lon 20hz:comment = "CTOH recalculated high frequencey longitude using
the orbit solution based on the stationary geopotential model (developed by
GFZ and CNES/GRGS). Reference: S. Rudenko, D. Dettmering, S. Esselborn, T.
Schöne, C. Förste, J.-M. Lemoine, M. Ablain, D. Alexandre, et K.-H.
Neumayer, « Influence of time variable geopotential models on precise
orbits of altimetry satellites, global and regional mean sea level
trends », Advances in Space Research, vol. 54, nº 1, p. 92-118, juill.
2014.\n" ;
      lon_20hz:scale_factor = 1.e-06f ;
      lon 20hz: FillValue = -2147483647 ;
```

<u>alt_20hz</u>

```
int alt_20hz(time, meas_ind) ;
    alt_20hz:long_name = "CTOH altitude high frequency" ;
    alt_20hz:standard_name = "altitude_ellipsoid" ;
```

```
alt_20hz:units = "m" ;
```

alt_20hz:comment = "CTOH recalculated high frequency altitude using the orbit solution based on the stationary geopotential model (developed by GFZ and CNES/GRGS). Reference: S. Rudenko, D. Dettmering, S. Esselborn, T. Schöne, C. Förste, J.-M. Lemoine, M. Ablain, D. Alexandre, et K.-H. Neumayer, « Influence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends », Advances in Space Research, vol. 54, n° 1, p. 92-118, juill. 2014.\n";

alt_20hz:scale_factor = 0.001f ;
alt 20hz: FillValue = -2147483647 ;

alt_flag_ocean1_ice0_20hz

```
<u>inst_range_corr</u>
```

int inst_range_corr(time) ;

```
inst_range_corr:long_name = "Internal Range Correction given by ESA
WAP original file" ;
    inst_range_corr:units = "m" ;
    inst range corr:scale factor = 1.e-06f ;
```

ice2_range_numval

ice2_sig0_numval

ice2_flag_20hz

byte ice2_flag_20hz(time, meas_ind) ;

```
ice2 flag 20hz: FillValue = -127b ;
```

ice2_range_20hz

```
int ice2_range_20hz(time, meas_ind) ;
    ice2_range_20hz:long_name = "range high frequency (calculated by
CTOH)";
    ice2_range_20hz:standard_name = "range";
    ice2_range_20hz:units = "m";
    ice2_range_20hz:comment = "range with internal_range_correction";
    ice2_range_20hz:add_offset = 800000.f;
    ice2_range_20hz:scale_factor = 0.001f;
    ice2_range_20hz:_FillValue = -2147483647;
```

ice2_le_width_20hz

```
int ice2_le_width_20hz(time, meas_ind) ;
    ice2_le_width_20hz:long_name = "recalculated high frequency leading
edge with CTOH\'s Ice-2 retracker" ;
    ice2_le_width_20hz:standard_name = "leading_edge_width" ;
    ice2_le_width_20hz:units = "m" ;
    ice2_le_width_20hz:scale_factor = 0.001f ;
    ice2_le_width_20hz:_FillValue = -2147483647 ;
```

ice2_1st_te_slope_20hz

ERS-2 Product Handbook

```
ice2_1st_te_slope_20hz:units = "1/s" ;
ice2_1st_te_slope_20hz:scale_factor = 1.f ;
ice2_1st_te_slope_20hz: FillValue = -2147483647 ;
```

ice1_sig0_20hz

```
short ice1_sig0_20hz(time, meas_ind) ;
    ice1_sig0_20hz:long_name = "ESA-provided ice1 sigma0" ;
    ice1_sig0_20hz:standard_name = "sigma0_backscatter" ;
    ice1_sig0_20hz:units = "dB" ;
    ice1_sig0_20hz:scale_factor = 0.01f ;
    ice1_sig0_20hz: FillValue = -32767s ;
```

ice2_sig0_20hz

```
short ice2_sig0_20hz(time, meas_ind) ;
    ice2_sig0_20hz:long_name = "recalculated high frequency backscatter
from CTOH\'s Ice-2 retracker" ;
    ice2_sig0_20hz:standard_name = "sigma0_backscatter" ;
    ice2_sig0_20hz:units = "dB" ;
    ice2_sig0_20hz:scale_factor = 0.01f ;
    ice2_sig0_20hz:_FillValue = -32767s ;
```

ice1_range_20hz

```
int icel_range_20hz(time, meas_ind) ;
    icel_range_20hz:long_name = "ice-1 range (25% leading edge) high
frequency (calculated by CTOH based on WAP low_retrack_point)" ;
    icel_range_20hz:standard_name = "range_icel" ;
    icel_range_20hz:units = "m" ;
    icel_range_20hz:add_offset = 800000.f ;
    icel_range_20hz:comment = "range with internal_range_correction using
WAP\'s low_retrack_point" ;
    icel_range_20hz:scale_factor = 0.001f ;
    icel_range_20hz: FillValue = -2147483647 ;
```

ice1_range_medium_20hz

```
int ice1_range_medium_20hz(time, meas_ind) ;
    ice1_range_medium_20hz:long_name = "ice-1 range (50% leading edge)
high frequency (calculated by CTOH based on WAP medium_retrack_point)";
    ice1_range_medium_20hz:standard_name = "range_ice1_medium";
    ice1_range_medium_20hz:units = "m";
    ice1_range_medium_20hz:add_offset = 800000.f;
    ice1_range_medium_20hz:comment = "range with
internal_range_correction_using WAP\'s medium_retrack_point";
    ice1_range_medium_20hz:scale_factor = 0.001f;
    ice1_range_medium_20hz:_FillValue = -2147483647;
```

<u>ice1_range_high_20hz</u>

```
int ice1_range_high_20hz(time, meas_ind) ;
    ice1_range_high_20hz:long_name = "ice-1 range (75% leading edge) high
frequency (calculated by CTOH based on WAP high_retrack_point)";
    ice1_range_high_20hz:standard_name = "range_ice1_high";
    ice1_range_high_20hz:units = "m";
    ice1_range_high_20hz:add_offset = 800000.f;
    ice1_range_high_20hz:comment = "range with internal_range_correction
using WAP\'s high_retrack_point";
    ice1_range_high_20hz:scale_factor = 0.001f;
    ice1_range_high_20hz:_FillValue = -2147483647;
```

tracker_range_20hz

```
int tracker_range_20hz(time, meas_ind) ;
    tracker_range_20hz:long_name = "20 Hz Ku band altimeter range (no
retracking), from WAP" ;
    tracker_range_20hz:standard_name = "altimeter_range" ;
    tracker_range_20hz:units = "m" ;
    tracker_range_20hz:add_offset = 800000.f ;
    tracker_range_20hz:comment = "All instrumental corrections
included" ;
    tracker_range_20hz:scale_factor = 0.001f ;
    tracker_range_20hz:_FillValue = -2147483647 ;
```

<u>ctoh_flag</u>

```
int ctoh_flag(time) ;
    ctoh_flag:_FillValue = 9999999 ;
    ctoh_flag:comment = "CTOH recommend not to use (1: unconsistent
time)" ;
    ctoh flag:ctoh edit date = "2015-01-14 14:46" ;
```

<u>solid_earth_tide</u>

```
int solid_earth_tide(time) ;
    solid_earth_tide:long_name = "Solid earth tide (Cartwright Edden
Tayler model)" ;
    solid_earth_tide:units = "m" ;
    solid_earth_tide:scale_factor = 0.001f ;
    solid_earth_tide:comment = "WAP field name: Earth Tide (range -1.0
to 1.0)" ;
```

rad_water_vapour

```
int rad_water_vapour(time) ;
    rad_water_vapour:long_name = "Total integrated water vapour, Q [GFA]"
;
    rad_water_vapour:units = "kg/m^2 x 10 range 0 to 550" ;
    rad_water_vapour:comment = "WAP field name: q_gfa (Total integrated
water vapour)" ;
    rad_water_vapour:scale_factor = 0.1f ;
    rad_water_vapour: FillValue = -2147483647 ;
```

rad_liquid_water

```
int rad_liquid_water(time) ;
    rad_liquid_water:long_name = "radiometer liquid water content" ;
    rad_liquid_water:source = "MWR" ;
    rad_liquid_water:units = "kg/m^2" ;
    rad_liquid_water:scale_factor = 0.1f ;
    rad_liquid_water:comment = "WAP field name: 1 (Total liquid water,
range 0 to 120)" ;
    rad_liquid water: FillValue = -2147483647 ;
```

<u>inst_agc_corr</u>

```
int inst_agc_corr(time) ;
    inst_agc_corr:long_name = "ESA provided AGC Internal Correction in
WAP original file" ;
    inst_agc_corr:units = "dB" ;
    inst_agc_corr:scale_factor = 0.01f ;
```

<u>agc_20hz</u>

```
short agc_20hz(time, meas_ind) ;
    agc_20hz:long_name = "ESA-provided corrected automatic gain
control" ;
    agc_20hz:standard_name = "AGC" ;
    agc_20hz:units = "dB" ;
    agc_20hz:scale_factor = 0.01f ;
    agc_20hz:_FillValue = -32767s ;
```

9 Detailed original CTOH added parameters and corrections.

doppler_range_corr_20hz

```
short doppler_range_corr_20hz(time, meas_ind) ;
    doppler_range_corr_20hz:_FillValue = -32767s ;
    doppler_range_corr_20hz:units = "m" ;
    doppler_range_corr_20hz:scale_factor = 0.001 ;
    doppler_range_corr_20hz:long_name = "Full_doppler_correction (due to
```

the orbit rate and the surface height rate) to altimeter range";

doppler_range_corr_20hz:comment = "Doppler range correction: Doppler correction computed from the range (ICE-1) variation measured by the radar altimeter. This is integration of the doppler effect due to the orbit variation and the doppler effect due to the surface heigth variation. See proceeding: F. Blarel et al, INVESTIGATIONS ON THE ENVISAT RA2 DOPPLER SLOPE CORRECTION FOR ICE SHEETS, ESA Living Planet Symposium, 28 June - 2 July 2010, Bergen, Norway.";

doppler_orbit_corr_20hz

```
short doppler_orbit_corr_20hz(time, meas_ind) ;
    doppler_orbit_corr_20hz:_FillValue = -32767s ;
    doppler_orbit_corr_20hz:units = "m" ;
    doppler_orbit_corr_20hz:scale_factor = 0.001 ;
    doppler_orbit_corr_20hz:long_name = "Doppler correction to altimeter
range" ;
```

doppler_orbit_corr_20hz:comment = "Doppler orbit correction: Doppler correction computed from the orbit variation given by Altitude of CoG above reference ellipsoid. WARNING: To apply this correction, take care to remove from the range parameter (hz18_ku_ice2) the doppler correction (hz18_ku_dop_corr correcting the orbit variation effect) already applied. See proceeding: F. Blarel et al, INVESTIGATIONS ON THE ENVISAT RA2 DOPPLER SLOPE CORRECTION FOR ICE SHEETS, ESA Living Planet Symposium, 28 June - 2 July 2010, Bergen, Norway.";

doppler_slope_corr_20hz

```
short doppler_slope_corr_20hz(time, meas_ind) ;
    doppler_slope_corr_20hz:_FillValue = -32767s ;
    doppler_slope_corr_20hz:units = "m" ;
    doppler_slope_corr_20hz:scale_factor = 0.001 ;
    doppler_slope_corr_20hz:long_name = "Doppler slope correction to
    altimeter range" ;
```

doppler_slope_corr_20hz:comment = "Doppler slope correction: Doppler correction computed from the surface heigth variation measured by the radar altimeter (ICE-1). See proceeding: F. Blarel et al, INVESTIGATIONS ON THE ENVISAT RA2 DOPPLER SLOPE CORRECTION FOR ICE SHEETS, ESA Living Planet Symposium, 28 June - 2 July 2010, Bergen, Norway.";

along_track_surface_slope_20hz

```
short along_track_surface_slope_20hz(time, meas_ind) ;
    along_track_surface_slope_20hz:_FillValue = -32767s ;
    along_track_surface_slope_20hz:units = "m/km" ;
    along_track_surface_slope_20hz:scale_factor = 0.001 ;
    along_track_surface_slope_20hz:long_name = "Along track surface
height slope" ;
    along_track_surface_slope_20hz:comment = "Along track Surface slope
computed from range (ICE-1) and orbit rate difference and taking to in
```

СТОН

```
account the ctoh footprint length size.";
```

footprint_length_20hz

short footprint_length_20hz(time, meas_ind) ;
 footprint_length_20hz:_FillValue = -32767s ;
 footprint_length_20hz:units = "km" ;
 footprint_length_20hz:scale_factor = 0.001 ;
 footprint_length_20hz:long_name = "footprint range" ;
 footprint_length_20hz:comment = "Size of the footprint length used to
estimated the dopplers corrections computed by the CTOH." ;

<u>surface_pressure_20hz</u>

```
short surface_pressure_20hz(time, meas_ind) ;
    surface_pressure_20hz:_FillValue = -32767s ;
    surface_pressure_20hz:scale_factor = 10. ;
    surface_pressure_20hz:units = "Pa" ;
    surface_pressure_20hz:long_name = "air pressure" ;
    surface_pressure_20hz:source = "ECMWF ERA Interim" ;
    surface_pressure_20hz:comment = "Surface pressure computed form Mean
sea level pressure (ECMWF ERA Interim), t2m (ECMWF ERA Interim) and the
altimetric surface heigh measure(=alt_sat+ice1_range). See proceeding:
Blarel and Legresy, Investigations On The Envisat Ra2 Dry Tropspheric
Correction, ESA Living Planet Symposium, Edinburgh, United Kingdom, 2013.
";
```

model_dry_tropo_corr_20hz

short model_dry_tropo_corr_20hz(time, meas_ind) ;
 model_dry_tropo_corr_20hz:_FillValue = -32767s ;
 model_dry_tropo_corr_20hz:scale_factor = 0.001 ;
 model_dry_tropo_corr_20hz:units = "m" ;
 model_dry_tropo_corr_20hz:long_name = "model dry tropospheric
correction" ;
 model_dry_tropo_corr_20hz:comment = "Dry tropospheric correction
computed from surface_pressure_20hz using relationship of Saastamoinen
(1972) and revisited by Davis et al. (1985). See proceeding: Blarel and
Legresy, Investigations On The Envisat Ra2 Dry Tropspheric Correction, ESA

```
temp_2m_ecmwf
```

```
short temp_2m_ecmwf(time) ;
    temp_2m_ecmwf:_FillValue = -32767s ;
    temp_2m_ecmwf:scale_factor = 0.01 ;
    temp_2m_ecmwf:units = "K" ;
    temp_2m_ecmwf:long_name = "2 metre temperature" ;
    temp_2m_ecmwf:source = "ECMWF ERA Interim" ;
    temp_2m_ecmwf:comment = "2 metre temperature along track
interpolated" ;
```

Living Planet Symposium, Edinburgh, United Kingdom, 2013. ";

mean_sea_level_pressure_ecmwf

```
short mean_sea_level_pressure_ecmwf(time) ;
    mean_sea_level_pressure_ecmwf:_FillValue = -32767s ;
    mean_sea_level_pressure_ecmwf:scale_factor = 10. ;
    mean_sea_level_pressure_ecmwf:long_name = "Mean_sea_level_pressure";
    mean_sea_level_pressure_ecmwf:source = "ECMWF ERA Interim";
    mean_sea_level_pressure_ecmwf:comment = "Mean_sea_level_pressure";
    mean_sea_level_pressure_ecmwf:comment = "Mean_sea_level_pressure";
    mean_sea_level_pressure_ecmwf:comment = "Mean_sea_level_pressure";
    mean_sea_level_pressure_ecmwf:comment = "Mean_sea_level_pressure";
```

```
along track interpolated" ;
```

iono_nic09

flag_ocean1_ice0_20hz

int flag_ocean1_ice0_20hz(time, meas_ind) ;
 flag_ocean1_ice0_20hz:_FillValue = 2147483647 ;
 flag_ocean1_ice0_20hz:comment = "Flag ocean/ice mode out of
calibration modes. Deduced by CTOH from alt_flag_ocean1_ice0_20hz and
calib_mode_flag_20hz";
 flag_ocean1_ice0_20hz:units = "flag" ;
 flag_ocean1_ice0_20hz:dims = "(\'time\', \'meas_ind\')" ;
 flag_ocean1_ice0_20hz:type = "i" ;
 flag_ocean1_ice0_20hz:ctoh_edit_date = "2015-01-15 16:56" ;

calib_mode_flag_20hz

int calib_mode_flag_20hz(time, meas_ind) ;
 calib_mode_flag_20hz:_FillValue = 2147483647 ;
 calib_mode_flag_20hz:comment = "flag>0: Data not usable. Probably in
calibration mode. Deduced by CTOH from: 1/ alt_flag_ocean1_ice0_20hz (2
lonely successive peaks) and 2/ period of calibration (every 2400 20hzrecords) for the intermediate peaks" ;
 calib_mode_flag_20hz:units = "flag" ;
 calib_mode_flag_20hz:times = "(\'time\', \'meas_ind\')" ;
 calib_mode_flag_20hz:type = "i" ;
 calib_mode_flag_20hz:ctoh_edit_date = "2015-01-15 16:56" ;

wet_tropo_cls

```
int wet_tropo_cls(time) ;
    wet_tropo_cls:_FillValue = 32767 ;
    wet_tropo_cls:units = "m" ;
    wet_tropo_cls:long_name = "wet_tropo_cls" ;
    wet_tropo_cls:scale_factor = 0.001 ;
    wet_tropo_cls:scale_factor = "Wet_tropo_cls" = 0.001 ;
```

wet_tropo_cls:comment = "Wet troposphere correction calculated by CLS over the continents using NCEP data \tWet troposphere correction over the continents is either incorrect or not available on MGDRs. The program calculates the correction at the correct altitude, interpolated from the gridded NCEP levels. MERCIER (2003), Satellite altimetry over non ocean areas : an improved wet tropospheric correction from meteorological models, Joint EGS-AGU meeting, Nice, Spring 2003. Used: corr_ssh = (alt - (range_ku + solid_earth_tide + ctoh1:iono_lis + pole_tide + inv_barom_corr + model dry tropo corr + mean sea surface))/1000.";

```
wet tropo cls:ctoh edit date = "2015-01-14 21:30" ;
```

gim ku

```
int gim_ku(time) ;
    gim_ku:_FillValue = -2147483648 ;
    gim_ku:units = "m" ;
    gim_ku:long_name = ;
    gim_ku:scale_factor = 0.001 ;
```

gim_ku:comment = "The GIM ionospheric correction is based on Total Electron Content (TEC) grids which are operationally produced by JPL in delayed time (5 days) as well as in near real time (10 hours). B.A., , I.L., Ho, C.M., Lindqwister, U.J., Mannucci, A.J., Pi, X., Reyes, M.J., Sparks, L.C., Wilson, B.D., (1999). Automated daily process for global ionospheric total electron content maps and satellite ocean altimeter ionospheric calibration based on Global Positioning System data Journal of Atmospheric and Solar-Terrestrial Physics 61 1205-1218"; gim ku:ctoh edit date = "2015-01-14 21:30";

```
ocean tide 1 GOT00
```

```
int ocean_tide_l_GOT00(time) ;
        ocean_tide_l_GOT00:_FillValue = 32767 ;
        ocean_tide_l_GOT00:units = "m" ;
        ocean_tide_l_GOT00:long_name = "Ocean Tide using GOT 00 model" ;
        ocean_tide_l_GOT00:scale_factor = 0.001 ;
        ocean_tide_l_GOT00:comment = "Ocean tide correction from the GOT2000
tidal model developed at GSFC.\n Warning: Does not include the load tide
(unlike ocean_tide_sol1), nor the permanent tide (like ocean_tide_sol1).";
        ocean_tide_l_GOT00:ctoh_edit_date = "2015-01-14 21:30";
```

<u>ocean_tide_FES_04</u>

```
int ocean_tide_FES_04(time) ;
        ocean_tide_FES_04:_FillValue = 32767 ;
        ocean_tide_FES_04:units = "m" ;
        ocean_tide_FES_04:long_name = "Ocean Tide using FES 2004 model" ;
        ocean_tide_FES_04:scale_factor = 0.001 ;
        ocean_tide_FES_04:comment = "Ocean tide correction from the FES model
developed at LEGOS, Toulouse. F. LYARD, F. LEFEBRE, LETTELIER, T., Francis
0. (2004). Modeling the global ocean tides: modern insights from FES2004.
Ocean dynamics 2006. 10.1007/s10236-006-0086-x.\n Warning: Does not
include the load tide (unlike ocean_tide_sol2), nor the permanent tide
(like ocean_tide_sol2).";
        ocean tide FES 04:ctoh edit date = "2015-01-14 21:30";
```

```
ocean tide GOT47
```

```
int ocean_tide_GOT47(time) ;
    ocean_tide_GOT47:_FillValue = 32767 ;
    ocean_tide_GOT47:units = "m" ;
    ocean_tide_GOT47:long_name = "Ocean Tide using GOT 4.7 model" ;
    ocean_tide_GOT47:scale_factor = 0.001 ;
    ocean_tide_GOT47:comment = "Tide Predictions in Shelf and Coastal
Waters: Status and Prospects. Ray R. D., Egbert G. D., Erofeeva S. Y. in,
Coastal Altimetry, Ed. Vignudelli S., Kostianoy A., Cipollini P.,
Benveniste J., Springer." ;
    ocean_tide_GOT47:ctoh_edit_date = "2015-01-14 21:30" ;
```

ib_MOG2D_NF

```
int ib_MOG2D_NF(time) ;
```

ib MOG2D NF: FillValue = 9999999;

```
ib MOG2D NF:units = "m" ;
```

```
ib_MOG2D_NF:long_name = "Inverted Barometer from MOG2D model" ;
```

```
ib_MOG2D_NF:scale_factor = 1.e-05 ;
```

ib_MOG2D_NF:comment = "Barotropic ocean response to ECMWF wind and surface pressure forcing (6h), calculated using the MOG2D barotropic model. Includes the total non-isostatic ocean response to surface forcing. This correction replaces the standard inverse barometer correction or ib_ECMWF. CARRERE L., LYARD F. (2003) Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing - comparisons with observations. Geophysical Res. Lett. vol. 30, n. 6,1275, doi:10:1029/2002GL016473.";

ib MOG2D NF:ctoh edit date = "2015-01-14 21:30" ;

ib ECMWF NF

int ib_ECMWF_NF(time) ; ib_ECMWF_NF:_FillValue = 999999 ; ib_ECMWF_NF:units = "m" ; ib_ECMWF_NF:long_name = "Inverted Barometer from ECMWF" ; ib_ECMWF_NF:scale_factor = 1.e-05 ; ib_ECMWF_NF:comment = "Inverted barometer effect calculated from 6hourly ECMWF surface pressure data and referenced to the global mean surface pressure over the oceans and sea-ice. Improvement to the IB response calculated by AVISO for TOPEX which is relative to a constant 1013 mbar reference surface. The new version conserves mass over the ocean." ; ib_ECMWF_NF:ctoh_edit_date = "2015-01-14 21:30" ;

ib_MOG2D_hf

```
int ib_MOG2D_hf(time) ;
    ib_MOG2D_hf:_FillValue = 9999999 ;
    ib_MOG2D_hf:units = "m" ;
    ib_MOG2D_hf:long_name = "Hight Frequency MOG2D Inverted Barometer" ;
    ib_MOG2D_hf:scale_factor = 1.e-05 ;
    ib_MOG2D_hf:comment = "ib_MOG2D_NF for periods smaller than 20 days."
;
    ib_MOG2D_hf:ctoh_edit_date = "2015-01-14 21:30" ;
```

ib_ECMWF_bf

```
int ib_ECMWF_bf(time) ;
    ib_ECMWF_bf:_FillValue = 9999999 ;
    ib_ECMWF_bf:units = "m" ;
    ib_ECMWF_bf:long_name = "Low Frequency ECMWF Inverted Barometer" ;
    ib_ECMWF_bf:scale_factor = 1.e-05 ;
    ib_ECMWF_bf:comment = "ib_ECMWF_NF for periods greater than 20 days."
;
    ib_ECMWF_bf:ctoh_edit_date = "2015-01-14 21:30" ;
```

<u>mss_cnes_cls_11</u>

```
int mss_cnes_cls_11(time) ;
    mss_cnes_cls_11:_FillValue = 2147483647 ;
    mss_cnes_cls_11:scale_factor = 0.001 ;
    mss_cnes_cls_11:CreatedBy = "MSSAscii2Grille" ;
    mss_cnes_cls_11:Title = "Mean sea surface CNES CLS 2011" ;
    mss_cnes_cls_11:FileType = "GRID DOTS" ;
```

ERS-2 Product Handbook

CTOH_ERS-2_2015_01 Issue : 1.1 Date : April 2016

```
mss_cnes_cls_11:_type_ = "<i4" ;
mss_cnes_cls_11:long_name = "Mean sea surface heights" ;
mss_cnes_cls_11:OriginalName = "MSS_CNES_CLS_2011.xyz" ;
mss_cnes_cls_11:units = "m" ;
mss_cnes_cls_11:CreatedOn = "08-MAR-2011" ;
mss_cnes_cls_11:ctoh edit date = "2015-01-14 21:26" ;</pre>
```

mdt_cnes_cls_09

```
double mdt_cnes_cls_09(time) ;
    mdt_cnes_cls_09: FillValue = 1.84467440737096e+19 ;
    mdt_cnes_cls_09:CreatedBy = "rio@px-124.cls.fr" ;
    mdt_cnes_cls_09:title = "MDT CNES-CLS09 V1.1" ;
    mdt_cnes_cls_09:FileType = "GRID_DOTS" ;
    mdt_cnes_cls_09:long_name = "Mean Dynamic Topography" ;
    mdt_cnes_cls_09:originalName = "MDT_CNES-CLS09_v1.1.nc" ;
    mdt_cnes_cls_09:units = "m" ;
    mdt_cnes_cls_09:CreatedOn = "11-MAR-2010 16:50:55:000000" ;
    mdt_cnes_cls_09:ctoh edit date = "2015-01-14 21:50" ;
```

```
<u>mdt_cnes_cls_09_med</u>
```

```
float mdt_cnes_cls_09_med(time) ;
    mdt_cnes_cls_09_med:_FillValue = 1.844674e+19f ;
    mdt_cnes_cls_09_med:CreatedBy = "rio@px-124.cls.fr" ;
    mdt_cnes_cls_09_med:title = "SMDT MED07 recalee a Gibraltar (offset
de 0.025 m)" ;
    mdt_cnes_cls_09_med:FileType = "GRID_DOTS" ;
    mdt_cnes_cls_09_med:_type_ = "<f4" ;
    mdt_cnes_cls_09_med:long_name = "Topographie Dynamique Moyenne MED07"
;
    mdt_cnes_cls_09_med:OriginalName = "smdt_med07_recale.nc" ;
    mdt_cnes_cls_09_med:CreatedOn = "29-APR-2010 16:12:33:000000" ;
    mdt_cnes_cls_09_med:ctoh edit date = "2015-01-14 22:01" ;</pre>
```

geoid_goce

```
double geoid_goce(time) ;
    geoid_goce:scale_factor = 1 ;
    geoid_goce:doc = "Computed from GOCE with a correction to refer the
value to the mean tide system i.e. includes the permanent tide (zero
frequency). Number of considered frequences : HS240 which is equivalent to
a spatial resolution of: 0.75 degrees. The intermediate cartesian grid
resolution is of 0.2 degrees. Elipsoid:T/P.";
    geoid_goce:_type_ = "<f8" ;
    geoid_goce:coordinates = "lat lon" ;
    geoid_goce:units = "m" ;
    geoid_goce:original_file = "grille_geoide_ponct.EIGEN-GOCE14p" ;
    geoid_goce:ref = "http://icgem.gfz-poztsdam.de/ICGEM/ICGEM.html" ;
    geoid_goce:ctoh_edit_date = "2015-01-14 22:06" ;
```

geoid_egm08

```
double geoid_egm08(time) ;
    geoid_egm08:scale_factor = 1 ;
    geoid_egm08:doc = "Computed from EGM2008 with a correction to refer
the value to the mean tide system i.e. includes the permanent tide (zero
frequency). Number of considered frequences : HS2400 which is equivalent to
```

СТОН

ERS-2 Product Handbook

CTOH_ERS-2_2015_01 Issue : 1.1 Date : April 2016

```
a spatial resolution of 0.075 degrees. The intermediate cartesian grid
resolution is of 0.033 degrees. Elipsoid:T/P (a_tp= 6378136300.0_16,
e_tp=1/298.257_16).";
    geoid_egm08:_type_ = "<f8";
    geoid_egm08:coordinates = "lat lon";
    geoid_egm08:contact = "ctoh_products@legos.obs-mip.fr";
    geoid_egm08:units = "m";
    geoid_egm08:original_file =
"grid_geoide_ponc_2mn_egm2008_2190_mean_tide_ctte_Topex";
    geoid_egm08:ref = "http://earth-
info.nga.mil/GandG/wgs84/gravitymod/egm2008";
    geoid_egm08:ctoh_edit_date = "2015-01-14 22:20";
```

mss_dtu_13

```
int mss_dtu_13(time) ;
    mss_dtu_13:scale_factor = 0.001 ;
    mss_dtu_13:source = "Danish National Space Center" ;
    mss_dtu_13:_type_ = "<i4" ;
    mss_dtu_13:title = "DTU13MSS_1min.mss.nc" ;
    mss_dtu_13:actual_range = "[-105.566 86.767]" ;
    mss_dtu_13:Conventions = "COARDS/CF-1.0" ;
    mss_dtu_13:long_name = "mean sea surface height" ;
    mss_dtu_13:units = "m" ;
    mss_dtu_13:node_offset = "1" ;
    mss_dtu_13:ctoh_edit_date = "2015-01-14 22:35" ;
    </pre>
```

<u>geoid_grace</u>

```
double geoid_grace(time) ;
    geoid_grace:units = "m" ;
    geoid_grace:_type_ = "<f8" ;
    geoid_grace:original_file = "GGM02_GHT_GRAV_meantide.GRID" ;
    geoid_grace:scale_factor = 0.001 ;
    geoid_grace:doc = "From GGM02 grid of 0.5 degrees. See http://earth-
info.nga.mil/GandG/wgs84/gravitymod/egm2008" ;
    geoid_grace:ctoh_edit_date = "2015-01-14 22:50" ;</pre>
```

<u>mss_cnes_cls_10</u>

```
int mss cnes cls 10(time) ;
      mss cnes cls 10: FillValue = 2147483647 ;
      mss cnes cls 10: comment = "The mean sea surface has been computed
using a 15-year of TP, ERS1 and ERS2, GFO, JASON1, ENVISAT mean profile
with a spatial resolution of 2\'. It is referenced to 1993-1999 period. The
MSS contains over ocean, the mean geoid plus the mean ocean dynamic
topography (1993-1999); over land, the EIGEN GRACE 5C mean geoid; and in
coastal areas a smooth extrapolation/relaxation of the ocean values (geoid
+ MDT) toward the EIGEN GRACE 5C geoid.";
      mss cnes cls 10:scale factor = 0.001 ;
      mss cnes cls 10:CreatedBy = "MSSAscii2Grille" ;
      mss cnes cls 10:Title = "Surface moyenne oceanique CNES CLS 2010" ;
     mss cnes cls 10:FileType = "GRID DOTS" ;
     mss_cnes_cls_10:_type = "<i4" ;</pre>
     mss cnes cls 10:long name = "Hauteurs de surface moyenne oceanique" ;
     mss cnes cls 10:OriginalName = "MSS CNES CLS 10" ;
     mss cnes cls 10:units = "m" ;
     mss_cnes_cls_10:CreatedOn = "03-MAI-2010" ;
      mss cnes cls 10:ctoh edit date = "2015-01-14 23:06" ;
```

```
gridone
short gridone(time) ;
      gridone:scale factor = 1. ;
      gridone:source = "1.00" ;
      gridone:title = "GEBCO One Minute Grid" ;
      gridone:_type_ = "<i2" ;</pre>
      gridone:add offset = 0. ;
      gridone:long name = "Bathymetry from GEBCO One Minute Grid (gridone)"
;
      gridone:units = "m" ;
      gridone:node offset = "0" ;
      gridone:ctoh edit date = "2015-01-14 23:21";
dist to coast leuliette
float dist to coast leuliette(time) ;
      dist to coast leuliette:comment = "Gridded distance to nearest coast
(>400km2) computed by Eric Leuliette - NOAA/Lab for Satellite Altimetry
using GMT tools and GSHHS coastline" ;
      dist to coast leuliette:title = "Distance to nearest coast (>400km2)
2 minutes gridded map " ;
      dist to coast leuliette:actual range = "[-2513.44677734
3819.88769531]";
      dist_to_coast_leuliette:_type_ = "<f4" ;</pre>
      dist_to_coast_leuliette:Conventions = "COARDS/CF-1.0" ;
      dist_to_coast_leuliette:long_name = "distance to coast" ;
      dist_to_coast_leuliette:GMT_version = "4.3.1" ;
      dist_to_coast_leuliette:contact = "Eric.Leuliette@noaa.gov
ctoh products@legos.obs-mip.fr" ;
      dist_to_coast_leuliette:units = "km" ;
      dist_to_coast_leuliette:node_offset = "0" ;
      dist to coast leuliette:credits = "Eric Leuliette, NOAA Laboratory
for Satellite Altimetry" ;
      dist to coast leuliette:institutions = "NOAA Laboratory for Satellite
Altimetry (original grid). LEGOS/CTOH (interpolation alongtracks)";
      dist to coast leuliette:ctoh edit date = "2015-01-14 23:36";
<u>dist_to_coast_stumpf</u>
double dist to coast stumpf(time) ;
      dist to coast stumpf:comment = "Original grid provided by Richard P.
Stumpf from NOAA National Ocean Service. Computed with GMT using the World
Vector Shoreline (WVS) and decimated to the intermediate resolution:
http://gmt.soest.hawaii.edu/gmt/doc/gmt/html/GMT Docs/node222.html. It
includes all the islands." ;
      dist to coast stumpf:reference =
"http://oceancolor.gsfc.nasa.gov/DOCS/DistFromCoast/";
      dist to coast stumpf:title = "Distance to nearest coastline from a
0.04 degrees resolution grid";
      dist_to_coast_stumpf:_type_ = "<f8" ;</pre>
      dist to coast stumpf:coordinates = "lon lat" ;
      dist to coast stumpf:contact = "ctoh products@legos.obs-mip.fr" ;
      dist to coast stumpf:units = "km";
      dist to coast stumpf:original file = "dist2coast.signed.txt" ;
      dist_to_coast_stumpf:history = "Wed Jan 26 18:21:17 2011: ncatted -a
comment, global, c, c, Original grid provided by Richard P. Stumpf from NOAA
National Ocean Service. Computed with GMT using the World Vector Shoreline
```

СТОН

```
(WVS) and decimated to the intermediate resolution:
http://gmt.soest.hawaii.edu/gmt/doc/gmt/html/GMT Docs/node222.html. It
includes all the islands. dist2coast.signed.nc\nConversion to netcdf by
CTOH www.ctoh.legos.obs-mip.fr";
      dist to coast stumpf:ctoh edit date = "2015-01-14 23:50" ;
geoid_eigen6c3
int geoid eigen6c3(time) ;
      geoid eigen6c3:scale factor = 0.001 ;
      geoid eigen6c3:doc = "Computed from GOCE with a correction to refer
the value to the mean tide system i.e. includes the permanent tide (zero
frequency). Warning: This \'C\' model has assimilated altimetry data. Thus
it is better than the \'S\' model, but it is not suitable to compute MSS or
MDT from altimetry as the data would be correlated. Number of considered
frequences : HS1949 which is equivalent to a spatial resolution of: 10km or
0.09 degrees. The intermediate cartesian grid resolution is of 0.02
degrees. Elipsoid:T/P:
gm0=0.39860044150000E+15,a0=0.63781363000000E+07,uapl0=0.29825700000000E+03
,om0=0.72921150000000E-04.. Data provided by Jean-Michel Lemoine from
GET/LEGOS team, on may 2014.";
      geoid_eigen6c3:_type_ = "<i4" ;</pre>
      geoid eigen6c3:coordinates = "lat lon" ;
      geoid eigen6c3:add offset = OL ;
      geoid eigen6c3:units = "m" ;
      geoid eigen6c3:original file = "grille EIGEN-
6C3stat.mean tide.dg 1949.5 min";
      geoid eigen6c3:ref = "http://icgem.gfz-
potsdam.de/ICGEM/documents/Foerste-et-al-EIGEN-6C3stat.pdf" ;
      geoid_eigen6c3:ctoh_edit_date = "2015-01-15 00:05" ;
```

gebco08

```
int gebco08(time) ;
    gebco08:scale_factor = 1. ;
    gebco08:source = "20100927" ;
    gebco08:title = "GEBCO_08 Grid" ;
    gebco08:_type_ = "<i4" ;
    gebco08:add_offset = 0. ;
    gebco08:long_name = "Bathymetry from GEBCO Half A Minute Grid
(gebco_08)" ;
    gebco08:units = "m" ;
    gebco08:node_offset = "1" ;
    gebco08:ctoh_edit_date = "2015-01-15 00:21" ;</pre>
```

ice1_range_intermission_corr_20hz

```
short ice1_range_intermission_corr_20hz(time, meas_ind) ;
    ice1_range_intermission_corr_20hz:_FillValue = -32767s ;
    ice1_range_intermission_corr_20hz:units = "m" ;
    ice1_range_intermission_corr_20hz:scale_factor = 0.001 ;
    ice1_range_intermission_corr_20hz:long_name = "ICE-1 Range Cross-
validation Correction" ;
    ice1_range_intermission_corr_20hz:comment = "ICE-1 Range correction"
```

to apply to ICE-1 ranges to have this ERS-2 release product consistent with the ICE-1 range of the ENVISAT-V2.1 product. This correction correct the inter-mission crossover difference to the satellites altitude (alt_20hz). It is already applied to the ICE-1 ranges parameters. It had been estimated by the CTOH in the Cross-Validation report available on it web site. Ref: " ;

ice1_sig0_intermission_corr_20hz

short ice1_sig0_intermission_corr_20hz(time, meas_ind) ;
 ice1_sig0_intermission_corr_20hz:_FillValue = -32767s ;
 ice1_sig0_intermission_corr_20hz:units = "dB" ;
 ice1_sig0_intermission_corr_20hz:scale_factor = 0.001 ;
 ice1_sig0_intermission_corr_20hz:long_name = "ICE-1 Backscatter
Cross-validation Correction" ;

ice1_sig0_intermission_corr_20hz:comment = "ICE-1 Backscatter correction to apply to ICE-1 Backscatter to have this ERS-2 release product consistent with the ICE-1 backscatter of the ENVISAT-V2.1 product. This correction correct the inter-mission crossover difference to the satellites altitude (alt_20hz). It is already applied to the ICE-1 Backscatter parameter. This correction had been estimated by the CTOH in the Cross-Validation report available on it web site. Ref: ";

ice2_range_intermission_corr_20hz

short ice2_range_intermission_corr_20hz(time, meas_ind) ;
 ice2_range_intermission_corr_20hz:_FillValue = -32767s ;
 ice2_range_intermission_corr_20hz:units = "m" ;
 ice2_range_intermission_corr_20hz:scale_factor = 0.001 ;
 ice2_range_intermission_corr_20hz:long_name = "ICE-2 Range Crossvalidation Correction" ;

ice2_range_intermission_corr_20hz:comment = "ICE-2 Range correction to apply to ICE-2 ranges to have this ERS-2 release product consistent with the ICE-2 range of the ENVISAT-V2.1 product. This correction correct the inter-mission crossover difference to the satellites altitude (alt_20hz).It is already applied to the ICE-2 range parameter. This correction had been estimated by the CTOH in the Cross-Validation report available on it web site. Ref: ";

ice2_sig0_intermission_corr_20hz

short ice2_sig0_intermission_corr_20hz(time, meas_ind) ;
 ice2_sig0_intermission_corr_20hz:_FillValue = -32767s ;
 ice2_sig0_intermission_corr_20hz:units = "dB" ;
 ice2_sig0_intermission_corr_20hz:scale_factor = 0.001 ;
 ice2_sig0_intermission_corr_20hz:long_name = "ICE-2 Backscatter
Cross-validation Correction";

ice2_sig0_intermission_corr_20hz:comment = "ICE-2 Backscatter correction to apply to ICE-2 Backscatter to have this ERS-2 release product consistent with the ICE-2 backscatter of the ENVISAT-V2.1 product. This correction correct the inter-mission crossover difference to the satellites altitude (alt_20hz). It is already applied to the ICE-2 Backscatter parameter. This correction had been estimated by the CTOH in the Cross-Validation report available on it web site. Ref: ";

ice2_le_width_intermission_corr_20hz

short ice2_le_width_intermission_corr_20hz(time, meas_ind) ;
 ice2_le_width_intermission_corr_20hz:_FillValue = -32767s ;
 ice2_le_width_intermission_corr_20hz:units = "m";
 ice2_le_width_intermission_corr_20hz:scale_factor = 0.001;
 ice2_le_width_intermission_corr_20hz:long_name = "ICE-2 Leading Edge
Width Cross-validation Correction";
 ice2_le_width_intermission_corr_20hz:comment = "ICE-2 Leading Edge

Width correction to apply to ICE-2 Leading Edge Width to have this ERS-2

release product consistent with the ICE-2 Leading Edge Width of the ENVISAT-V2.1 product. This correction correct the inter-mission crossover difference to the satellites altitude (alt_20hz). It is already applied to the ICE-2 Leading Edge Width parameter. This correction had been estimated by the CTOH in the Cross-Validation report available on it web site. Ref: "

ice2 1st te slope intermission corr 20hz

short ice2_lst_te_slope_intermission_corr_20hz(time, meas_ind) ;
 ice2_lst_te_slope_intermission_corr_20hz:_FillValue = -32767s ;
 ice2_lst_te_slope_intermission_corr_20hz:units = "s⁻¹" ;
 ice2_lst_te_slope_intermission_corr_20hz:scale_factor = 0.001 ;
 ice2_lst_te_slope_intermission_corr_20hz:long_name = "ICE-2 Trailing
Edge Slope Cross-validation Correction" ;
 ice2_lst_te_slope_intermission_corr_20hz:comment = "ICE-2 Trailing

Edge Slope correction to apply to ICE-2 Trailing Edge Slope to have this ERS-2 release product consistent with the ICE-2 Trailing Edge Slope of the ENVISAT-V2.1 product. This correction correct the inter-mission crossover difference to the satellites altitude (alt_20hz). It is already applied to the ICE-2 Trailing Edge Slope parameter. This correction had been estimated by the CTOH in the Cross-Validation report available on it web site. Ref: ";

10 Detailed parameters and corrections interpolated from ERS-2 Reaper Product.

load_tide_sol2_reaper

```
short load_tide sol2 reaper(time) ;
      load tide sol2 reaper: FillValue = 32767s ;
      load_tide_sol2_reaper:comment = "Data interpolated from product
ers2.r by CTOH. This value can be added to the corresponding ocean tide
height value recorded in the product (ocean tide sol2). See
REAPER User Handbook." ;
      load tide sol2 reaper:scale factor = 0.001 ;
      load tide sol2 reaper:source = "FES2004" ;
      load tide sol2 reaper: dimensions = "(u\'time\',)";
     load tide sol2 reaper:coordinates = "lon lat" ;
     load tide sol2 reaper:long name = "load tide height for geocentric
ocean tide (solution 2)";
     load tide sol2 reaper: nb cycles = "1" ;
     load tide sol2 reaper: nc data type = "<i2" ;</pre>
     load tide sol2 reaper:units = "m" ;
     load tide sol2 reaper:institution = "CLS" ;
      load tide sol2_reaper:_nb_hf_per_record_ = "1" ;
     load_tide_sol2_reaper:ctoh_edit_date = "2015-05-20 22:29" ;
ocean_tide_sol1_reaper
short ocean tide soll reaper(time) ;
      ocean tide soll reaper: FillValue = 32767s ;
      ocean tide soll reaper:comment = "Data interpolated from product
ers2.r by CTOH. Solution 1 corresponds to GOT4.7 model. This is the pure
ocean tide, not including the corresponding loading tide
(load tide sol1) and equilibrium long-period ocean tide height
(ocean tide equil). The permanent tide (zero frequency) is not included in
this parameter because it is included in the geoid and mean sea surface (
geoid, mean sea surface). See REAPER User Handbook.";
     ocean_tide_sol1_reaper:scale_factor = 0.001 ;
      ocean_tide_sol1_reaper:source = "GOT4.7" ;
      ocean_tide_sol1_reaper:_dimensions_ = "(u\'time\',)" ;
      ocean_tide_sol1_reaper:coordinates = "lon lat" ;
      ocean_tide_sol1_reaper:long_name = "ocean tide height (solution 1)" ;
      ocean_tide_sol1_reaper:_nb_cycles_ = "1" ;
      ocean_tide_sol1_reaper:_nc_data_type_ = "<i2" ;</pre>
      ocean_tide_sol1_reaper:units = "m" ;
      ocean_tide_sol1_reaper:institution = "CLS" ;
      ocean_tide_sol1_reaper:_nb_hf_per_record_ = "1" ;
     ocean tide soll reaper:ctoh edit date = "2015-05-20 22:29";
```

ocean_tide_sol2_reaper

ocean_tide_sol2_reaper:_FillValue = 32767s ; ocean_tide_sol2_reaper:comment = "Data interpolated from product ers2.r by CTOH. Solution 2 corresponds to FES2004 model. This is the pure ocean tide, not including the corresponding loading tide (load_tide_sol2) and equilibrium long-period ocean tide height (ocean_tide_equil). The permanent tide (zero frequency) is not included in this parameter because it is included in the geoid and mean sea surface СТОН

ERS-2 Product Handbook

```
(geoid, mean_sea_surface). See REAPER User Handbook.";
        ocean_tide_sol2_reaper:scale_factor = 0.001;
        ocean_tide_sol2_reaper:source = "FES2004";
        ocean_tide_sol2_reaper:_dimensions_ = "(u\'time\',)";
        ocean_tide_sol2_reaper:coordinates = "lon lat";
        ocean_tide_sol2_reaper:long_name = "ocean_tide_height (solution 2)";
        ocean_tide_sol2_reaper:_nb_cycles_ = "1";
        ocean_tide_sol2_reaper:_nc_data_type_ = "<i2";
        ocean_tide_sol2_reaper:units = "m";
        ocean_tide_sol2_reaper:institution = "CLS";
        ocean_tide_sol2_reaper:_nb_hf_per_record_ = "1";
        ocean_tide_sol2_reaper:ctoh_edit_date = "2015-05-20_22:29";
```

```
pole_tide_reaper
```

```
short pole tide reaper(time) ;
      pole tide reaper: FillValue = 32767s ;
      pole tide reaper:comment = "Data interpolated from product ers2.r by
CTOH. See REAPER User Handbook." ;
      pole tide reaper:scale factor = 0.001;
      pole tide reaper:source = "Wahr [1985]" ;
      pole_tide_reaper:_dimensions = "(u\'time\',)" ;
      pole tide reaper:coordinates = "lon lat" ;
      pole tide reaper:long name = "geocentric pole tide height" ;
      pole_tide_reaper:standard name =
"sea surface height amplitude due to pole tide" ;
      pole tide reaper:_nb_cycles_ = "1" ;
      pole_tide_reaper:_nc_data_type_ = "<i2" ;</pre>
     pole_tide_reaper:units = "m" ;
      pole_tide_reaper:institution = "CLS" ;
      pole tide reaper: nb hf per record = "1" ;
     pole tide reaper:ctoh edit date = "2015-05-20 22:29" ;
```

ocean_tide_non_equil_reaper

```
short ocean_tide_non_equil_reaper(time) ;
      ocean_tide_non_equil_reaper:_FillValue = 32767s ;
      ocean_tide_non_equil_reaper:comment = "Data interpolated from product
ers2.r by CTOH. This parameter is computed as a correction to the parameter
ocean tide equil. This value can be added to ocea
n tide equil (or ocean tide soll, ocean tide sol2) so that the resulting
value models the total non equilibrium ocean tide height. See REAPER User
Handbook." ;
      ocean tide non equil reaper:scale factor = 0.001 ;
      ocean tide non equil reaper:source = "FES2004" ;
      ocean tide non equil reaper: dimensions = "(u\'time\',)";
      ocean tide non equil reaper:coordinates = "lon lat" ;
      ocean tide non equil reaper:long name = "non-equilibrium long-period
ocean tide height" ;
      ocean tide non equil reaper:standard name =
"sea surface height amplitude due to non equilibrium ocean tide" ;
      ocean tide non equil reaper: nb cycles = "1";
      ocean_tide_non_equil_reaper:_nc_data_type = "<i2" ;</pre>
      ocean_tide_non_equil_reaper:units = "m" ;
      ocean_tide_non_equil_reaper:institution = "CLS" ;
      ocean_tide_non_equil_reaper:_nb_hf per record = "1" ;
      ocean_tide_non_equil_reaper:ctoh_edit_date = "2015-05-20 22:29" ;
```

```
tb 365 reaper
short tb 365 reaper(time) ;
      tb 365 reaper: FillValue = 32767s ;
      tb 365 reaper:quality flag = "interp flag tb rad state " ;
      tb_365_reaper:scale_factor = 0.01 ;
      tb 365 reaper:long name = "36.5 GHz main beam brightness temperature"
;
      tb_365_reaper:_dimensions = "(u\'time\',)" ;
      tb 365 reaper:coordinates = "lon lat" ;
      tb_365_reaper:_nb_cycles = "1" ;
      tb 365 reaper:standard name = "surface brightness temperature" ;
      tb_365_reaper: nc data type = "<i2";</pre>
      tb 365 reaper: units = "K";
      tb 365 reaper:comment = "Data interpolated from product ers2.r by
CTOH. Brightness temperature measured by the microwave radiometer at 36.5
GHz and cross-calibrated with ENVISAT. This is an avera
ged, 1 Hz value computed from the valid 20 Hz measurements.";
      tb 365 reaper: nb hf per record = "1";
      tb_365_reaper:ctoh_edit date = "2015-05-20 22:29";
rad_wet_tropo_corr_reaper
short rad_wet_tropo_corr_reaper(time) ;
      rad_wet_tropo_corr_reaper:_FillValue = 32767s ;
      rad_wet_tropo_corr_reaper:quality_flag = "qual_rad_1hz
interp flag tb" ;
      rad wet tropo corr reaper:scale factor = 0.001 ;
      rad_wet_tropo_corr_reaper:source = "MWR" ;
      rad_wet_tropo_corr_reaper:_dimensions_ = "(u\'time\',)" ;
      rad_wet_tropo_corr_reaper:coordinates = "lon lat" ;
      rad wet tropo corr reaper:long name = "radiometer wet tropospheric
correction" ;
     rad wet tropo corr reaper:standard name =
"altimeter range correction due to wet troposphere" ;
      rad_wet_tropo_corr_reaper:_nb_cycles_ = "1" ;
      rad_wet_tropo_corr_reaper:_nc_data_type = "<i2" ;</pre>
      rad_wet_tropo_corr_reaper:units = "m" ;
      rad_wet_tropo_corr_reaper:institution = "CLS" ;
      rad wet tropo corr reaper:comment = "Data interpolated from product
ers2.r by CTOH. A wet tropospheric correction must be added (negative
value) to the instrument range to correct this range meas
urement for wet tropospheric range delays of the radar pulse. See REAPER
User Handbook." ;
      rad wet tropo corr reaper: nb hf per record = "1" ;
      rad wet tropo corr reaper:ctoh edit date = "2015-05-20 22:29";
model wet tropo corr reaper
short model wet tropo corr reaper(time) ;
      model wet tropo corr reaper: FillValue = 32767s ;
```

model_wet_tropo_corr_reaper:comment = "Data interpolated from product ers2.r by CTOH. Computed at the altimeter time-tag from the interpolation of 2 meteorological fields that surround the altime ter time-tag. A wet tropospheric correction must be added (negative value) to the instrument range to correct this range measurement for wet tropospheric range delays of the radar pulse. See REAPER User Handbook .";

```
model_wet_tropo_corr_reaper:scale_factor = 0.001 ;
```

СТОН

ERS-2 Product Handbook

CTOH_ERS-2_2015_01 Issue : 1.1 Date : April 2016

```
model_wet_tropo_corr_reaper:source = "European Center for Medium
Range Weather Forecasting";
    model_wet_tropo_corr_reaper:_dimensions_ = "(u\'time\',)";
    model_wet_tropo_corr_reaper:coordinates = "lon lat";
    model_wet_tropo_corr_reaper:long_name = "model wet tropospheric
correction";
    model_wet_tropo_corr_reaper:standard_name =
"altimeter_range_correction_due_to_wet_troposphere";
    model_wet_tropo_corr_reaper:_nb_cycles_ = "1";
    model_wet_tropo_corr_reaper:_nc_data_type_ = "<i2";
    model_wet_tropo_corr_reaper:units = "m";
    model_wet_tropo_corr_reaper:institution = "ECMWF";
    model_wet_tropo_corr_reaper:_nb_hf_per_record_ = "1";
    model_wet_tropo_corr_reaper:ctoh_edit_date = "2015-05-20 22:29";
```

tb_238_reaper

```
short tb 238 reaper(time) ;
      tb 238 reaper: FillValue = 32767s ;
        _238_reaper:quality_flag = "interp_flag tb rad state " ;
      tb
      tb 238 reaper:scale factor = 0.01;
      tb 238 reaper:long name = "23.8 GHz main beam brightness temperature"
;
      tb_238_reaper:_dimensions_ = "(u\'time\',)" ;
      tb 238 reaper:coordinates = "lon lat" ;
      tb_238_reaper:_nb_cycles_ = "1" ;
      tb 238 reaper:standard name = "surface brightness temperature" ;
      tb_238_reaper:_nc_data_type_ = "<i2" ;</pre>
      tb_238_reaper:units = "K" ;
      tb_238_reaper:comment = "Data interpolated from product ers2.r by
CTOH. Brightness temperature measured by the microwave radiometer at 23.8
GHz and cross-calibrated with ENVISAT. This is an avera
ged, 1 Hz value computed from the valid 20 Hz measurements." ;
      tb 238 reaper: nb hf per record = "1";
      tb 238 reaper:ctoh edit date = "2015-05-20 22:29";
```

ocean_tide_equil_reaper

```
short ocean_tide_equil_reaper(time) ;
      ocean tide equil reaper: FillValue = 32767s ;
      ocean tide equil reaper:comment = "Data interpolated from product
ers2.r by CTOH. This value can be added to the two geocentric ocean tide
height values recorded in the product (ocean tide soll a
nd ocean tide sol2).";
      ocean tide equil reaper:scale factor = 0.001 ;
      ocean tide equil reaper:source = "Cartwright tidal potential" ;
     ocean tide equil reaper: dimensions = "(u\'time\',)";
     ocean tide equil reaper:coordinates = "lon lat" ;
     ocean tide equil reaper:long name = "equilibrium long-period ocean
tide height" ;
     ocean tide equil reaper:standard name =
"sea surface height amplitude due to equilibrium ocean tide" ;
     ocean_tide_equil_reaper:_nb_cycles_ = "1" ;
     ocean_tide_equil_reaper:_nc_data type = "<i2" ;</pre>
     ocean_tide_equil_reaper:units = "m" ;
     ocean_tide_equil_reaper:institution = "CLS" ;
     ocean_tide_equil_reaper:_nb_hf_per_record_ = "1" ;
      ocean tide equil reaper:ctoh edit date = "2015-05-20 22:29" ;
```

load tide_sol1_reaper

```
short load tide sol1 reaper(time) ;
      load tide sol1 reaper: FillValue = 32767s ;
      load tide soll reaper:comment = "Data interpolated from product
ers2.r by CTOH. This value can be added to the corresponding ocean tide
height value recorded in the product (ocean_tide_sol1). See
REAPER User Handbook." ;
      load tide sol1 reaper:scale factor = 0.001 ;
      load tide sol1 reaper:source = "GOT4.7" ;
      load tide soll reaper: dimensions = "(u\'time\',)" ;
      load tide sol1 reaper:coordinates = "lon lat" ;
      load_tide_sol1_reaper:long_name = "load tide height for geocentric"
ocean tide (solution 1)" ;
      load tide soll reaper: nb cycles = "1" ;
      load_tide_sol1_reaper:_nc_data type = "<i2" ;</pre>
      load tide soll reaper:units = "m";
      load_tide_sol1_reaper:institution = "CLS" ;
load_tide_sol1_reaper:_nb_hf_per_record_ = "1" ;
      load tide soll reaper:ctoh edit date = "2015-05-20 22:29";
```

11 References

- [1] "REAPER Product Handbook for ERS Altimetry Reprocessed Products," 12-May-2014.
 [Online]. Available: https://earth.esa.int/documents/10174/1511090/Reaper-Product-Handbook-2_2.pdf. [Accessed: 28-May-2014].
- [2] B. Legresy, F. Papa, F. Remy, G. Vinay, M. van den Bosch, and O.-Z. Zanife, "ENVISAT radar altimeter measurements over continental surfaces and ice caps using the ICE-2 retracking algorithm," *Remote Sens. Environ.*, vol. 95, no. 2, pp. 150–163, Mar. 2005.
- [3] S. Rudenko, D. Dettmering, S. Esselborn, T. Schöne, C. Förste, J.-M. Lemoine, M. Ablain, D. Alexandre, and K.-H. Neumayer, "Influence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends," *Adv. Space Res.*, vol. 54, no. 1, pp. 92–118, Jul. 2014.
- [4] S. Rudenko, M. Otten, P. Visser, R. Scharroo, T. Schöne, and S. Esselborn, "New improved orbit solutions for the ERS-1 and ERS-2 satellites," *Adv. Space Res.*, vol. 49, no. 8, pp. 1229–1244, 2012.
- [5] F. Blarel and B. Legresy, "INVESTIGATIONS ON THE ENVISAT RA2 TROPOSPHERIC CORRECTION." ESA Living Planet, 2013.
- [6] F. Blarel and B. Legresy, "INVESTIGATIONS ON THE ENVISAT RA2 DOPPLER SLOPE CORRECTION FOR ICE SHEETS." ESA Living Planet, 2012.
- [7] R. Scharroo and W. H. F. Smith, "A global positioning system–based climatology for the total electron content in the ionosphere," *J. Geophys. Res.*, vol. 115, no. A10, Oct. 2010.
- [8] B. A. Iijima, I. L. Harris, C. M. Ho, U. J. Lindqwister, A. J. Mannucci, X. Pi, M. J. Reyes, L. C. Sparks, and B. D. Wilson, "Automated daily process for global ionospheric total electron content maps and satellite ocean altimeter ionospheric calibration based on Global Positioning System data," *J. Atmospheric Sol.-Terr. Phys.*, vol. 61, no. 16, pp. 1205–1218, 1999.
- [9] B. Legresy, F. Blarel, F. Nino, and F. Frappart, "ERS2-ENVISAT cross-validation CTOH retracking of the tandem phase." OSTST, 2014.
- [10] F. Blarel, B. Legresy, and F. Remy, "VALIDATION OF ENVISAT RADAR ALTIMETRY WITHIN THE OSCAR PROJECT," *06-2010*.
- [11] D. B. Chelton, J. C. Ries, B. J. Haines, L.-L. Fu, and P. S. Callahan, "Satellite altimetry," *Int. Geophys.*, vol. 69, pp. 1–ii, 2001.
- [12] D. J. Wingham, C. G. Rapley, and H. Griffiths, "New techniques in satellite altimeter tracking systems," in ESA Proceedings of the 1986 International Geoscience and Remote Sensing Symposium(IGARSS'86) on Remote Sensing: Today's Solutions for Tomorrow's Information Needs, 1986, vol. 3.
- [13] J. L. BAMBER, "Ice sheet altimeter processing scheme," Int. J. Remote Sens., vol. 15, no. 4, pp. 925–938, 1994.
- [14] B. Legresy and F. Remy, "Altimetric observations of surface characteristics of the Antarctic ice sheet," *J. Glaciol.*, vol. 43, no. 144, pp. 265–275, 1997.
- [15] F. Frappart, S. Calmant, M. Cauhope, F. Seyler, and A. Cazenave, "Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin," *Remote Sens. Environ.*, vol. 100, no. 2, pp. 252–264, Jan. 2006.
- [16] F. Frappart, K. D. Minh, J. L'Hermitte, A. Cazenave, G. Ramillien, T. Le Toan, and N. Mognard-Campbell, "Water volume change in the lower Mekong from satellite altimetry

СТОН

and imagery data," Geophys. J. Int., vol. 167, no. 2, pp. 570-584, Nov. 2006.

[17] J. Santos da Silva, S. Calmant, F. Seyler, O. C. Rotunno Filho, G. Cochonneau, and W. J. Mansur, "Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions," *Remote Sens. Environ.*, vol. 114, no. 10, pp. 2160–2181, Oct. 2010.